Axial Algebras - recent research and problems

Justin M ${ }^{\text {C }}$ Inroy
Heilbronn Institute for Mathematical Research
University of Bristol

CIMPA school: Non-associative Algebras and their Applications (Madagascar) - $3^{\text {rd }}$ Sep 2021

We have already introduced axial algebras and introduced some concepts:

We have already introduced axial algebras and introduced some concepts:

- Miyamoto group - a naturally associated subgroup of automorphisms
- Closed sets of axes
- Equivalence of axes and stability
- Frobenius form - a bilinear form which associates with the algebra product
- Ideals - the radical and projection graphs

We have already introduced axial algebras and introduced some concepts:

- Miyamoto group - a naturally associated subgroup of automorphisms
- Closed sets of axes
- Equivalence of axes and stability
- Frobenius form - a bilinear form which associates with the algebra product
- Ideals - the radical and projection graphs

We will now discuss in a bit less detail some other concepts and give some current (and future) research directions.

Sum decompositions

The results on sum decompositions are from:

- S.M.S. Khasraw, J. M ${ }^{\text {c Inroy }}$ and S. Shpectorov, On the structure of axial algebras, Trans. Amer. Math. Soc. 373 (2020), 2135-2156.

Sum decompositions

The results on sum decompositions are from:

- S.M.S. Khasraw, J. M ${ }^{\text {c Inroy }}$ and S. Shpectorov, On the structure of axial algebras, Trans. Amer. Math. Soc. 373 (2020), 2135-2156.

Lemma
Suppose that A is generated by a set of pairwise annihilating subalgebras $\left\{A_{i}\right\}_{i \in I}$.

Sum decompositions

The results on sum decompositions are from:

- S.M.S. Khasraw, J. M ${ }^{\text {c Inroy }}$ and S. Shpectorov, On the structure of axial algebras, Trans. Amer. Math. Soc. 373 (2020), 2135-2156.

Lemma
Suppose that A is generated by a set of pairwise annihilating subalgebras $\left\{A_{i}\right\}_{i \in I}$. Then $A=\sum_{i \in I} A_{i}$ as a vector space.

Sum decompositions

The results on sum decompositions are from:

- S.M.S. Khasraw, J. M ${ }^{\text {c Inroy }}$ and S. Shpectorov, On the structure of axial algebras, Trans. Amer. Math. Soc. 373 (2020), 2135-2156.

Lemma
Suppose that A is generated by a set of pairwise annihilating subalgebras $\left\{A_{i}\right\}_{i \in I}$. Then $A=\sum_{i \in I} A_{i}$ as a vector space.

When A is generated by a set of pairwise annihilating subalgebras $\left\{A_{i}\right\}_{i \in I}$, we will write $A=\square_{i \in I} A_{i}$ and say it has a sum decomposition.

Sum decompositions

The results on sum decompositions are from:

- S.M.S. Khasraw, J. M ${ }^{\text {c Inroy }}$ and S. Shpectorov, On the structure of axial algebras, Trans. Amer. Math. Soc. 373 (2020), 2135-2156.

Lemma

Suppose that A is generated by a set of pairwise annihilating subalgebras $\left\{A_{i}\right\}_{i \in I}$. Then $A=\sum_{i \in I} A_{i}$ as a vector space.

When A is generated by a set of pairwise annihilating subalgebras $\left\{A_{i}\right\}_{i \in I}$, we will write $A=\square_{i \in I} A_{i}$ and say it has a sum decomposition.
If the sum $u=\sum_{i \in I} u_{i}$, where $u_{i} \in A_{i}$, is unique for all $\in A$, then we say that the sum is direct and write $A=\boxplus_{i \in I} A_{i}$.

Lemma
If $A=\square_{i \in I} A_{i}$ and $\operatorname{Ann}(A)=0$, then $A=\boxplus_{i \in I} A_{i}$.

Axial sum decompositions

Recall that $A=\square_{i \in I} A_{i}$ means that A is generated by pairwise annihilating subalgebras A_{i}.

Axial sum decompositions

Recall that $A=\square_{i \in I} A_{i}$ means that A is generated by pairwise annihilating subalgebras A_{i}.

Note that we do not require that the A_{i} are axial subalgebras.

Axial sum decompositions

Recall that $A=\square_{i \in I} A_{i}$ means that A is generated by pairwise annihilating subalgebras A_{i}.

Note that we do not require that the A_{i} are axial subalgebras.
Do all sum decompositions respect the axial structure?

Axial sum decompositions

Recall that $A=\square_{i \in I} A_{i}$ means that A is generated by pairwise annihilating subalgebras A_{i}.

Note that we do not require that the A_{i} are axial subalgebras.
Do all sum decompositions respect the axial structure?
Theorem
Suppose $A=\square_{i \in I} A_{i}$ is a primitive axial algebra. Let $X_{i}:=A_{i} \cap X$ and $B_{i}:=\left\langle\left\langle X_{i}\right\rangle\right\rangle$.

Axial sum decompositions

Recall that $A=\square_{i \in I} A_{i}$ means that A is generated by pairwise annihilating subalgebras A_{i}.

Note that we do not require that the A_{i} are axial subalgebras.
Do all sum decompositions respect the axial structure?
Theorem
Suppose $A=\square_{i \in I} A_{i}$ is a primitive axial algebra. Let $X_{i}:=A_{i} \cap X$ and $B_{i}:=\left\langle\left\langle X_{i}\right\rangle\right\rangle$. Then
(1) the X_{i} partition X
(2) $A=\square_{i \in I} B_{i}$

The best sum decompositions

Question

What is the 'best' sum decomposition?

The best sum decompositions

Question

Is there a unique finest sum decomposition?

The best sum decompositions

```
Question
Is there a unique finest sum decomposition?
```

Suppose that A_{i} and A_{j} are two subalgebras such that $A_{i} A_{j}=0$.

The best sum decompositions

Question

Is there a unique finest sum decomposition?
Suppose that A_{i} and A_{j} are two subalgebras such that $A_{i} A_{j}=0$. Then $X_{i} X_{j}=0$ as well.

The best sum decompositions

Question

Is there a unique finest sum decomposition?
Suppose that A_{i} and A_{j} are two subalgebras such that $A_{i} A_{j}=0$. Then $X_{i} X_{j}=0$ as well.

Definition
The non-annihilating graph Δ has vertex set X and an edge $a \sim b$ if and only if $a b \neq 0$.

The best sum decompositions

Question

Is there a unique finest sum decomposition?
Suppose that A_{i} and A_{j} are two subalgebras such that $A_{i} A_{j}=0$. Then $X_{i} X_{j}=0$ as well.

Definition
The non-annihilating graph Δ has vertex set X and an edge $a \sim b$ if and only if $a b \neq 0$.

It is clear that X_{i} is a union of connected components of Δ.

The best sum decompositions

Question

Is there a unique finest sum decomposition?
Suppose that A_{i} and A_{j} are two subalgebras such that $A_{i} A_{j}=0$. Then $X_{i} X_{j}=0$ as well.

Definition
The non-annihilating graph Δ has vertex set X and an edge $a \sim b$ if and only if $a b \neq 0$.

It is clear that X_{i} is a union of connected components of Δ.
Conjecture
Let $A=\square_{i \in I} A_{i}$ be a primitive axial algebra of Monster type. The finest sum decomposition of A is given by the connected components Δ_{i} of Δ.

The best sum decompositions

Question
Is there a unique finest sum decomposition?
Suppose that A_{i} and A_{j} are two subalgebras such that $A_{i} A_{j}=0$. Then $X_{i} X_{j}=0$ as well.

Definition
The non-annihilating graph Δ has vertex set X and an edge $a \sim b$ if and only if $a b \neq 0$.

It is clear that X_{i} is a union of connected components of Δ.
Conjecture
Let $A=\square_{i \in I} A_{i}$ be a primitive axial algebra of Monster type. The finest sum decomposition of A is given by the connected components Δ_{i} of Δ. i.e. The finest axial sum decomposition is $A=\square_{i \in I} B_{i}$ where $B_{i}:=\left\langle\left\langle\Delta_{i}\right\rangle\right\rangle$.

Results

What about for the groups?

Results

What about for the groups?
Theorem
Let $A=\square_{i \in I} A_{i}$ be an axial algebra. Then, $\operatorname{Miy}(X)$ is a central product of the subgroups $\left\{\operatorname{Miy}\left(\Delta_{i}\right)\right\}_{i \in I}$.

Partial results

Partial results

Definition

(1) A subspace $I \subseteq A$ is a quasi-ideal if $a l \subseteq I$ for all $a \in X$.

Partial results

Definition

(1) A subspace $I \subseteq A$ is a quasi-ideal if al $\subseteq I$ for all $a \in X$.
(2) The spine $Q(A, X)$ is the quasi-ideal generated by X.

Partial results

Definition

(1) A subspace $I \subseteq A$ is a quasi-ideal if al $\subseteq I$ for all $a \in X$.
(2) The spine $Q(A, X)$ is the quasi-ideal generated by X.
(3) We say A is slender if $A=Q(A, X)$.

Partial results

Definition

(1) A subspace $I \subseteq A$ is a quasi-ideal if al $\subseteq I$ for all $a \in X$.
(2) The spine $Q(A, X)$ is the quasi-ideal generated by X.
(3) We say A is slender if $A=Q(A, X)$.

So the spine will contain elements of the form $a, a b, a(b c), a(b(c d))$ \ldots where $a, b, c, d, \ldots \in X$.

Partial results

Definition

(1) A subspace $I \subseteq A$ is a quasi-ideal if al $\subseteq I$ for all $a \in X$.
(2) The spine $Q(A, X)$ is the quasi-ideal generated by X.
(3) We say A is slender if $A=Q(A, X)$.

So the spine will contain elements of the form $a, a b, a(b c), a(b(c d))$ \ldots where $a, b, c, d, \ldots \in X$. But it will not necessarily contain elements such as $(a b)(c d)$ (unless they can be written as a sum of the previous type of monomials).

Partial results

Definition

(1) A subspace $I \subseteq A$ is a quasi-ideal if al $\subseteq I$ for all $a \in X$.
(2) The spine $Q(A, X)$ is the quasi-ideal generated by X.
(3) We say A is slender if $A=Q(A, X)$.

So the spine will contain elements of the form $a, a b, a(b c), a(b(c d))$ \ldots where $a, b, c, d, \ldots \in X$. But it will not necessarily contain elements such as $(a b)(c d)$ (unless they can be written as a sum of the previous type of monomials).
Aside: We say an algebra is m-closed if it is spanned by products of length at most m in the axes.

Partial results

Definition

(1) A subspace $I \subseteq A$ is a quasi-ideal if al $\subseteq I$ for all $a \in X$.
(2) The spine $Q(A, X)$ is the quasi-ideal generated by X.
(3) We say A is slender if $A=Q(A, X)$.

So the spine will contain elements of the form $a, a b, a(b c), a(b(c d))$ \ldots where $a, b, c, d, \ldots \in X$. But it will not necessarily contain elements such as $(a b)(c d)$ (unless they can be written as a sum of the previous type of monomials).

Aside: We say an algebra is m-closed if it is spanned by products of length at most m in the axes. So every algebra which is at most 3-closed is slender.

Partial results

Definition

(1) A subspace $I \subseteq A$ is a quasi-ideal if al $\subseteq I$ for all $a \in X$.
(2) The spine $Q(A, X)$ is the quasi-ideal generated by X.
(3) We say A is slender if $A=Q(A, X)$.

So the spine will contain elements of the form $a, a b, a(b c), a(b(c d))$ \ldots where $a, b, c, d, \ldots \in X$. But it will not necessarily contain elements such as $(a b)(c d)$ (unless they can be written as a sum of the previous type of monomials).

Aside: We say an algebra is m-closed if it is spanned by products of length at most m in the axes. So every algebra which is at most 3-closed is slender. We know of only a handful of algebras which are 4-closed or more, with the largest being 5-closed.

Partial results

Definition
A fusion law is called Seress if $0 \in \mathcal{F}$ and $0 \star \lambda \subseteq\{\lambda\}$ for all $\lambda \in \mathcal{F}$.

Partial results

```
Definition
A fusion law is called Seress if \(0 \in \mathcal{F}\) and \(0 \star \lambda \subseteq\{\lambda\}\) for all \(\lambda \in \mathcal{F}\).
```

Both the Jordan type fusion law and Monster type fusion law are Seress.

Partial results

```
Definition
A fusion law is called Seress if \(0 \in \mathcal{F}\) and \(0 \star \lambda \subseteq\{\lambda\}\) for all \(\lambda \in \mathcal{F}\).
```

Both the Jordan type fusion law and Monster type fusion law are Seress.

Theorem
Suppose that A has a Seress fusion law.

Partial results

Definition

A fusion law is called Seress if $0 \in \mathcal{F}$ and $0 \star \lambda \subseteq\{\lambda\}$ for all $\lambda \in \mathcal{F}$.

Both the Jordan type fusion law and Monster type fusion law are Seress.

Theorem
Suppose that A has a Seress fusion law. Then the conjecture holds if at most one $A_{i}:=\left\langle\left\langle\Delta_{i}\right\rangle\right\rangle$ is not slender.

Classifications of axial algebras

We wish to classify axial algebras which have a given fusion law.

Classifications of axial algebras

We wish to classify axial algebras which have a given fusion law.

| | 1 | 0 | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 1 | 0 | η | | | | | |
| 1 | 1 | | 1 | 1 | | 1 | 0 | α | β |
| 0 | | 0 | 0 | | 0 | η | | | |
| | 0 | 1 | 1 | | α | β | | | |
| | 0 | | 0 | α | β | | | | |
| | η | η | η | 1,0 | α | α | α | 1,0 | β |
| | β | β | β | β | $1,0, \alpha$ | | | | |

Figure: Fusion laws $\mathcal{A}, \mathcal{J}(\eta)$, and $\mathcal{M}(\alpha, \beta)$

The most simple fusion law is the following:

	1	0
1	1	
0		0

Table: The fusion law \mathcal{A}

Recall that the 2-dimensional algebra $2 \mathrm{~B}=\langle\langle a, b\rangle\rangle$ satisfied this fusion law.

The most simple fusion law is the following:

	1	0
1	1	
0		0

Table: The fusion law \mathcal{A}

Recall that the 2-dimensional algebra $2 \mathrm{~B}=\langle\langle a, b\rangle\rangle$ satisfied this fusion law. Actually, we can do better:

The most simple fusion law is the following:

	1	0
1	1	
0		0

Table: The fusion law \mathcal{A}

Recall that the 2-dimensional algebra $2 \mathrm{~B}=\langle\langle a, b\rangle\rangle$ satisfied this fusion law. Actually, we can do better:

Proposition
Let A be a primitive axial algebra. Then A is associative if and only if it satisfies the fusion law \mathcal{A}.

Jordan type

	1	0	η
1	1		η
0		0	η
η	η	η	1,0

Table: The Jordan type fusion law $\mathcal{J}(\eta)$

We have already seen that a Matsuo algebra $M_{\eta}(G)$, defined from a 3transposition group G, is an axial algebra with this fusion law.

Jordan type

	1	0	η
1	1		η
0		0	η
η	η	η	1,0

Table: The Jordan type fusion law $\mathcal{J}(\eta)$

We have already seen that a Matsuo algebra $M_{\eta}(G)$, defined from a 3transposition group G, is an axial algebra with this fusion law.

Theorem (Hall, Rehren, Shpectorov, 2015)
Every primitive axial algebra of Jordan type $\eta \neq \frac{1}{2}$ is a Matsuo algebra $M_{\eta}(G)$.

What about for a half?

Recall that (most) Jordan algebras are axial algebras of Jordan type $\frac{1}{2}$.

What about for a half?

Recall that (most) Jordan algebras are axial algebras of Jordan type $\frac{1}{2}$.
Conjecture
Every axial algebra of Jordan type $\frac{1}{2}$ is (a quotient of) a Matsuo algebra, or a Jordan algebra.

What about for a half?

Recall that (most) Jordan algebras are axial algebras of Jordan type $\frac{1}{2}$.

Conjecture

Every axial algebra of Jordan type $\frac{1}{2}$ is (a quotient of) a Matsuo algebra, or a Jordan algebra.

The result for $\eta \neq \frac{1}{2}$ was proved by first considering the 2 -generated case.

What about for a half?

Recall that (most) Jordan algebras are axial algebras of Jordan type $\frac{1}{2}$.

Conjecture

Every axial algebra of Jordan type $\frac{1}{2}$ is (a quotient of) a Matsuo algebra, or a Jordan algebra.

The result for $\eta \neq \frac{1}{2}$ was proved by first considering the 2-generated case.

- the 2-generated algebras are known: they are spin factor algebras.

What about for a half?

Recall that (most) Jordan algebras are axial algebras of Jordan type $\frac{1}{2}$.

Conjecture

Every axial algebra of Jordan type $\frac{1}{2}$ is (a quotient of) a Matsuo algebra, or a Jordan algebra.

The result for $\eta \neq \frac{1}{2}$ was proved by first considering the 2 -generated case.

- the 2 -generated algebras are known: they are spin factor algebras.
- Gorshkov and Staroletov (2020) have recently determined the universal 3 -generated $\mathcal{J}\left(\frac{1}{2}\right)$-algebra.

What about for a half?

Recall that (most) Jordan algebras are axial algebras of Jordan type $\frac{1}{2}$.

Conjecture

Every axial algebra of Jordan type $\frac{1}{2}$ is (a quotient of) a Matsuo algebra, or a Jordan algebra.

The result for $\eta \neq \frac{1}{2}$ was proved by first considering the 2-generated case.

- the 2-generated algebras are known: they are spin factor algebras.
- Gorshkov and Staroletov (2020) have recently determined the universal 3-generated $\mathcal{J}\left(\frac{1}{2}\right)$-algebra.
- However, every Jordan algebra which is 3-generated is also a Matsuo algebra (De Medts, Rehren with a correction from Yabe).

What about for a half?

Recall that (most) Jordan algebras are axial algebras of Jordan type $\frac{1}{2}$.

Conjecture

Every axial algebra of Jordan type $\frac{1}{2}$ is (a quotient of) a Matsuo algebra, or a Jordan algebra.

The result for $\eta \neq \frac{1}{2}$ was proved by first considering the 2-generated case.

- the 2-generated algebras are known: they are spin factor algebras.
- Gorshkov and Staroletov (2020) have recently determined the universal 3-generated $\mathcal{J}\left(\frac{1}{2}\right)$-algebra.
- However, every Jordan algebra which is 3-generated is also a Matsuo algebra (De Medts, Rehren with a correction from Yabe).
- For 4-generated algebras, this is no longer the case.

What about for a half?

Recall that (most) Jordan algebras are axial algebras of Jordan type $\frac{1}{2}$.

Conjecture

Every axial algebra of Jordan type $\frac{1}{2}$ is (a quotient of) a Matsuo algebra, or a Jordan algebra.

The result for $\eta \neq \frac{1}{2}$ was proved by first considering the 2 -generated case.

- the 2 -generated algebras are known: they are spin factor algebras.
- Gorshkov and Staroletov (2020) have recently determined the universal 3 -generated $\mathcal{J}\left(\frac{1}{2}\right)$-algebra.
- However, every Jordan algebra which is 3 -generated is also a Matsuo algebra (De Medts, Rehren with a correction from Yabe).
- For 4 -generated algebras, this is no longer the case.
- New ideas of Gorshkov and Staroletov can be used to try to attack this case (plan of a workshop to be held).

Monster type $\mathcal{M}\left(\frac{1}{4}, \frac{1}{32}\right)$

We would like to be able to classify all axial algebras of Monster type $\mathcal{M}(\alpha, \beta)$. However, this seems very hard even for $\mathcal{M}\left(\frac{1}{4}, \frac{1}{32}\right)$.

Monster type $\mathcal{M}\left(\frac{1}{4}, \frac{1}{32}\right)$

We would like to be able to classify all axial algebras of Monster type $\mathcal{M}(\alpha, \beta)$. However, this seems very hard even for $\mathcal{M}\left(\frac{1}{4}, \frac{1}{32}\right)$. We do know some results for 2-generated algebra though.

Monster type $\mathcal{M}\left(\frac{1}{4}, \frac{1}{32}\right)$

We would like to be able to classify all axial algebras of Monster type $\mathcal{M}(\alpha, \beta)$. However, this seems very hard even for $\mathcal{M}\left(\frac{1}{4}, \frac{1}{32}\right)$. We do know some results for 2-generated algebra though.

Theorem (Norton-Sakuma Theorem, Hall, Rehren, Shpectorov, 2015)
Let A be a 2-generated axial algebra of Monster type $\mathcal{M}\left(\frac{1}{4}, \frac{1}{32}\right)$ over a field of characteristic 0 which admits a Frobenius form. Then A is one of the nine following algebras:

$$
1 \mathrm{~A}, 2 \mathrm{~A}, 2 \mathrm{~B}, 3 \mathrm{~A}, 3 \mathrm{C}, 4 \mathrm{~A}, 4 \mathrm{~B}, 5 \mathrm{~A} \text {, or } 6 \mathrm{~A}
$$

Monster type $\mathcal{M}\left(\frac{1}{4}, \frac{1}{32}\right)$

We would like to be able to classify all axial algebras of Monster type $\mathcal{M}(\alpha, \beta)$. However, this seems very hard even for $\mathcal{M}\left(\frac{1}{4}, \frac{1}{32}\right)$. We do know some results for 2-generated algebra though.

Theorem (Norton-Sakuma Theorem, Hall, Rehren, Shpectorov, 2015)
Let A be a 2-generated axial algebra of Monster type $\mathcal{M}\left(\frac{1}{4}, \frac{1}{32}\right)$ over a field of characteristic 0 which admits a Frobenius form. Then A is one of the nine following algebras:

$$
1 \mathrm{~A}, 2 \mathrm{~A}, 2 \mathrm{~B}, 3 \mathrm{~A}, 3 \mathrm{C}, 4 \mathrm{~A}, 4 \mathrm{~B}, 5 \mathrm{~A} \text {, or } 6 \mathrm{~A}
$$

These algebras are known as Norton-Sakuma algebras.

The Norton-Sakuma algebras

These Norton-Sakuma algebras are precisely the 2-generated algebras found in the Griess algebra!

The Norton-Sakuma algebras

These Norton-Sakuma algebras are precisely the 2-generated algebras found in the Griess algebra!

So even if we have an axial algebra which is not contained in the Griess algebra, these are the only possible 2-generated axial algebra of Monster type $\mathcal{M}\left(\frac{1}{4}, \frac{1}{32}\right)$.

The Norton-Sakuma algebras

These Norton-Sakuma algebras are precisely the 2-generated algebras found in the Griess algebra!

So even if we have an axial algebra which is not contained in the Griess algebra, these are the only possible 2-generated axial algebra of Monster type $\mathcal{M}\left(\frac{1}{4}, \frac{1}{32}\right)$.

The number in the algebra, eg 4 for 4 A , is the order of the product $\tau_{a} \tau_{b}$, for the generators a and b.

The Norton-Sakuma algebras

These Norton-Sakuma algebras are precisely the 2-generated algebras found in the Griess algebra!

So even if we have an axial algebra which is not contained in the Griess algebra, these are the only possible 2-generated axial algebra of Monster type $\mathcal{M}\left(\frac{1}{4}, \frac{1}{32}\right)$.

The number in the algebra, eg 4 for 4 A , is the order of the product $\tau_{a} \tau_{b}$, for the generators a and b.

Conjecture (Straight Flush Conjecture, Ivanov)
Suppose A is an indecomposable Majorana algebra where every number, 2, 3, 4, 5 and 6 occurs in some 2-generated subalgebra. Then A embeds into the Griess algebra.

2-generated $\mathcal{M}(\alpha, \beta)$-axial algebras

Felix Rehren generalised the Norton Sakuma algebras for the $\mathcal{M}(\alpha, \beta)$ fusion law.

2-generated $\mathcal{M}(\alpha, \beta)$-axial algebras

Felix Rehren generalised the Norton Sakuma algebras for the $\mathcal{M}(\alpha, \beta)$ fusion law.

$$
3 \mathrm{~A}(\alpha, \beta), 4 \mathrm{~A}\left(\frac{1}{4}, \beta\right), 4 \mathrm{~B}\left(\alpha, \frac{\alpha^{2}}{2}\right), 5 \mathrm{~A}\left(\alpha, \frac{5 \alpha-1}{8}\right) \text { and } 6 \mathrm{~A}\left(\alpha, \frac{-\alpha^{2}}{4(2 \alpha-1)}\right)
$$

2-generated $\mathcal{M}(\alpha, \beta)$-axial algebras

Felix Rehren generalised the Norton Sakuma algebras for the $\mathcal{M}(\alpha, \beta)$ fusion law.

$$
3 \mathrm{~A}(\alpha, \beta), 4 \mathrm{~A}\left(\frac{1}{4}, \beta\right), 4 \mathrm{~B}\left(\alpha, \frac{\alpha^{2}}{2}\right), 5 \mathrm{~A}\left(\alpha, \frac{5 \alpha-1}{8}\right) \text { and } 6 \mathrm{~A}\left(\alpha, \frac{-\alpha^{2}}{4(2 \alpha-1)}\right)
$$

(We also have all Jordan type algebras as example. So $2 \mathrm{~A} \cong 3 \mathrm{C}\left(\frac{1}{4}\right)$ and $3 \mathrm{C} \cong 3 \mathrm{C}\left(\frac{1}{32}\right)$.

2-generated $\mathcal{M}(\alpha, \beta)$-axial algebras

Felix Rehren generalised the Norton Sakuma algebras for the $\mathcal{M}(\alpha, \beta)$ fusion law.

$$
3 \mathrm{~A}(\alpha, \beta), 4 \mathrm{~A}\left(\frac{1}{4}, \beta\right), 4 \mathrm{~B}\left(\alpha, \frac{\alpha^{2}}{2}\right), 5 \mathrm{~A}\left(\alpha, \frac{5 \alpha-1}{8}\right) \text { and } 6 \mathrm{~A}\left(\alpha, \frac{-\alpha^{2}}{4(2 \alpha-1)}\right)
$$

(We also have all Jordan type algebras as example. So $2 \mathrm{~A} \cong 3 \mathrm{C}\left(\frac{1}{4}\right)$ and $3 \mathrm{C} \cong 3 \mathrm{C}\left(\frac{1}{32}\right)$.)

These new families don't all exist for every value of (α, β). Some exist for only a subvariety of \mathbb{F}^{2}.

2-generated $\mathcal{M}(\alpha, \beta)$-axial algebras

Felix Rehren generalised the Norton Sakuma algebras for the $\mathcal{M}(\alpha, \beta)$ fusion law.

$$
3 \mathrm{~A}(\alpha, \beta), 4 \mathrm{~A}\left(\frac{1}{4}, \beta\right), 4 \mathrm{~B}\left(\alpha, \frac{\alpha^{2}}{2}\right), 5 \mathrm{~A}\left(\alpha, \frac{5 \alpha-1}{8}\right) \text { and } 6 \mathrm{~A}\left(\alpha, \frac{-\alpha^{2}}{4(2 \alpha-1)}\right)
$$

(We also have all Jordan type algebras as example. So $2 \mathrm{~A} \cong 3 \mathrm{C}\left(\frac{1}{4}\right)$ and $3 \mathrm{C} \cong 3 \mathrm{C}\left(\frac{1}{32}\right)$.)
These new families don't all exist for every value of (α, β). Some exist for only a subvariety of \mathbb{F}^{2}.

Amazingly, if you plot the varieties where the algebras exist, they intersect in a unique point $\left(\frac{1}{4}, \frac{1}{32}\right)$!

2-generated $\mathcal{M}(\alpha, \beta)$-axial algebras

In a recent result, Yabe has classified all these algebras under the addition symmetry assumption that there exists an involutory automorphism f which switches the two generators.

2-generated $\mathcal{M}(\alpha, \beta)$-axial algebras

In a recent result, Yabe has classified all these algebras under the addition symmetry assumption that there exists an involutory automorphism f which switches the two generators.

Theorem (Yabe 2020, Franchi, Mainardis 2020)
A symmetric 2-generated $\mathcal{M}(\alpha, \beta)$-axial algebra is one of the following:

2-generated $\mathcal{M}(\alpha, \beta)$-axial algebras

In a recent result, Yabe has classified all these algebras under the addition symmetry assumption that there exists an involutory automorphism f which switches the two generators.

Theorem (Yabe 2020, Franchi, Mainardis 2020)
A symmetric 2-generated $\mathcal{M}(\alpha, \beta)$-axial algebra is one of the following:
(1) an axial algebra of Jordan type α, or β;

2-generated $\mathcal{M}(\alpha, \beta)$-axial algebras

In a recent result, Yabe has classified all these algebras under the addition symmetry assumption that there exists an involutory automorphism f which switches the two generators.

Theorem (Yabe 2020, Franchi, Mainardis 2020)
A symmetric 2-generated $\mathcal{M}(\alpha, \beta)$-axial algebra is one of the following:
(1) an axial algebra of Jordan type α, or β;
(2) a quotient of the highwater algebra \mathcal{H}, or its characteristic 5 cover $\hat{\mathcal{H}}$, where $(\alpha, \beta)=\left(2, \frac{1}{2}\right)$; or

2-generated $\mathcal{M}(\alpha, \beta)$-axial algebras

In a recent result, Yabe has classified all these algebras under the addition symmetry assumption that there exists an involutory automorphism f which switches the two generators.

Theorem (Yabe 2020, Franchi, Mainardis 2020)
A symmetric 2-generated $\mathcal{M}(\alpha, \beta)$-axial algebra is one of the following:
(1) an axial algebra of Jordan type α, or β;
(2) a quotient of the highwater algebra \mathcal{H}, or its characteristic 5 cover $\hat{\mathcal{H}}$, where $(\alpha, \beta)=\left(2, \frac{1}{2}\right)$; or
(3) one of the algebras listed below:
(1 $3 \mathrm{~A}(\alpha, \beta), 4 \mathrm{~A}\left(\frac{1}{4}, \beta\right), 4 \mathrm{~B}\left(\alpha, \frac{\alpha^{2}}{2}\right), 4 \mathrm{~J}\left(\alpha, \frac{\alpha}{2}\right), 4 \mathrm{Y}\left(\frac{1}{2}, \beta\right), 4 \mathrm{Y}\left(\alpha, \frac{1-\alpha^{2}}{2}\right)$, $5 \mathrm{~A}\left(\alpha, \frac{5 \alpha-1}{8}\right), 6 \mathrm{~A}\left(\alpha, \frac{-\alpha^{2}}{4(2 \alpha-1)}\right), 6 \mathrm{~J}\left(\alpha, \frac{\alpha}{2}\right)$, or $6 \mathrm{Y}\left(\frac{1}{2}, 2\right)$;
(2) $\mathrm{IY}_{3}\left(\alpha, \frac{1}{2}, \mu\right)$, or $\mathrm{IY}_{5}\left(\alpha, \frac{1}{2}\right)$.

The highwater algebra \mathcal{H} and its cover $\hat{\mathcal{H}}$

The highwater algebra \mathcal{H} was discovered by Franchi, Mainardis and Shpectorov (2020) and also independently by Yabe (2020).

The highwater algebra \mathcal{H} and its cover $\hat{\mathcal{H}}$

The highwater algebra \mathcal{H} was discovered by Franchi, Mainardis and Shpectorov (2020) and also independently by Yabe (2020). Unlike all the other algebras known before, it is an infinite dimensional 2-generated algebra, which was a big surprise!

The highwater algebra \mathcal{H} and its cover $\hat{\mathcal{H}}$

The highwater algebra \mathcal{H} was discovered by Franchi, Mainardis and Shpectorov (2020) and also independently by Yabe (2020). Unlike all the other algebras known before, it is an infinite dimensional 2-generated algebra, which was a big surprise!

Franchi and Mainardis (2020) then found a cover $\hat{\mathcal{H}}$ in characteristic 5.

The highwater algebra \mathcal{H} and its cover $\hat{\mathcal{H}}$

The highwater algebra \mathcal{H} was discovered by Franchi, Mainardis and Shpectorov (2020) and also independently by Yabe (2020). Unlike all the other algebras known before, it is an infinite dimensional 2-generated algebra, which was a big surprise!

Franchi and Mainardis (2020) then found a cover $\hat{\mathcal{H}}$ in characteristic 5.
Both \mathcal{H} and $\hat{\mathcal{H}}$ are infinite dimensional algebras where the radical is codimension 1 , so finding all the ideals (and hence all the quotients) is difficult.

The highwater algebra \mathcal{H} and its cover $\hat{\mathcal{H}}$

The highwater algebra \mathcal{H} was discovered by Franchi, Mainardis and Shpectorov (2020) and also independently by Yabe (2020). Unlike all the other algebras known before, it is an infinite dimensional 2-generated algebra, which was a big surprise!

Franchi and Mainardis (2020) then found a cover $\hat{\mathcal{H}}$ in characteristic 5.
Both \mathcal{H} and $\hat{\mathcal{H}}$ are infinite dimensional algebras where the radical is codimension 1 , so finding all the ideals (and hence all the quotients) is difficult.

Franchi, Mainardis, M${ }^{C}$ Inroy, (2021?) have classified all ideals and the surprise is that for every $n \in N$, there is a quotient with n axes.

Open question

Problem

What about 2-generated algebras of Monster type $\mathcal{M}(\alpha, \beta)$ which are not symmetric?

Larger algebras

For every pair of axes a and b in an axial algebra A, we have a 2-generated subalgebra $\langle\langle a, b\rangle\rangle$.

Larger algebras

For every pair of axes a and b in an axial algebra A, we have a 2-generated subalgebra $\langle\langle a, b\rangle\rangle$. The configuration of all these 2-generated subalgebras is called the shape of A.

Larger algebras

For every pair of axes a and b in an axial algebra A, we have a 2-generated subalgebra $\langle\langle a, b\rangle\rangle$. The configuration of all these 2-generated subalgebras is called the shape of A.

On the other hand, for your favourite configuration of 2-generated algebras, is there an axial algebra with this shape?

Larger algebras

For every pair of axes a and b in an axial algebra A, we have a 2-generated subalgebra $\langle\langle a, b\rangle\rangle$. The configuration of all these 2 -generated subalgebras is called the shape of A.

On the other hand, for your favourite configuration of 2-generated algebras, is there an axial algebra with this shape? This is analogous to completions of an amalgam of groups.

Larger algebras

For every pair of axes a and b in an axial algebra A, we have a 2-generated subalgebra $\langle\langle a, b\rangle\rangle$. The configuration of all these 2 -generated subalgebras is called the shape of A.

On the other hand, for your favourite configuration of 2-generated algebras, is there an axial algebra with this shape? This is analogous to completions of an amalgam of groups.

In an algebra A, conjugate pairs of axes $\{a, b\}$ and $\{c, d\}$ must have isomorphic 2-generated subalgebras. So our possible configurations are constrained by the action of the automorphism group.

Larger algebras

For every pair of axes a and b in an axial algebra A, we have a 2-generated subalgebra $\langle\langle a, b\rangle\rangle$. The configuration of all these 2 -generated subalgebras is called the shape of A.

On the other hand, for your favourite configuration of 2-generated algebras, is there an axial algebra with this shape? This is analogous to completions of an amalgam of groups.

In an algebra A, conjugate pairs of axes $\{a, b\}$ and $\{c, d\}$ must have isomorphic 2-generated subalgebras. So our possible configurations are constrained by the action of the automorphism group.
(Aside: M^{c} Inroy and Shpectorov have designed an algorithm and implemented it in Magma to calculate an axial algebra with a given Miyamoto group and shape.)

Axets

So, we need to be able to talk about axes and the action of the automorphism group without having an axial algebra!

Axets

So, we need to be able to talk about axes and the action of the automorphism group without having an axial algebra!
$\mathrm{M}^{\text {C }}$ Inroy and Shpectorov introduced the concept of an axet which mimics the set of axes together the action of the Miyamoto group via the τ-map.

Axets

So, we need to be able to talk about axes and the action of the automorphism group without having an axial algebra!
M^{C} Inroy and Shpectorov introduced the concept of an axet which mimics the set of axes together the action of the Miyamoto group via the τ-map. Now we can talk about shapes and completions rigorously.

Axets

So, we need to be able to talk about axes and the action of the automorphism group without having an axial algebra!
M^{C} Inroy and Shpectorov introduced the concept of an axet which mimics the set of axes together the action of the Miyamoto group via the τ-map. Now we can talk about shapes and completions rigorously.

Theorem (M'Inroy and Shpectorov, 2021)
A 2-generated axet for a C_{2}-graded fusion law is one of two types:
(1) regular - either one orbit of axes, or two of the same length; or
(2) skew - one orbit of size k and the other of size $2 k$.

Axets

So, we need to be able to talk about axes and the action of the automorphism group without having an axial algebra!

M ${ }^{\text {CInroy }}$ and Shpectorov introduced the concept of an axet which mimics the set of axes together the action of the Miyamoto group via the τ-map. Now we can talk about shapes and completions rigorously.

Theorem (M'Inroy and Shpectorov, 2021)
A 2-generated axet for a C_{2}-graded fusion law is one of two types:
(1) regular - either one orbit of axes, or two of the same length; or
(2) skew - one orbit of size k and the other of size $2 k$.

We do not know of any examples of algebras with a skew axet.

Axets

So, we need to be able to talk about axes and the action of the automorphism group without having an axial algebra!

M ${ }^{\text {Clnroy }}$ and Shpectorov introduced the concept of an axet which mimics the set of axes together the action of the Miyamoto group via the τ-map. Now we can talk about shapes and completions rigorously.

Theorem (M'Inroy and Shpectorov, 2021)
A 2-generated axet for a C_{2}-graded fusion law is one of two types:
(1) regular - either one orbit of axes, or two of the same length; or
(2) skew - one orbit of size k and the other of size $2 k$.

We do not know of any examples of algebras with a skew axet. Such an example would necessarily be non-symmetric.

Axets

So, we need to be able to talk about axes and the action of the automorphism group without having an axial algebra!

M ${ }^{\text {Clnroy }}$ and Shpectorov introduced the concept of an axet which mimics the set of axes together the action of the Miyamoto group via the τ-map. Now we can talk about shapes and completions rigorously.

Theorem (M'Inroy and Shpectorov, 2021)
A 2-generated axet for a C_{2}-graded fusion law is one of two types:
(1) regular - either one orbit of axes, or two of the same length; or
(2) skew - one orbit of size k and the other of size $2 k$.

We do not know of any examples of algebras with a skew axet. Such an example would necessarily be non-symmetric. Do such examples exist?

References

(1) T. De Medts and F. Rehren, Jordan algebras and 3-transposition groups, J. Algebra 478 (2017), 318-340.
(2) C. Franchi and M. Mainardis, A note on 2-generated symmetric axial algebras of Monster type, arXiv:2101.09506, 10 pages, Jan 2021.
(3) C. Franchi, M. Mainardis and J. MCInroy, Quotients of the highwater algebra, in preparation.
(9) C. Franchi, M. Mainardis and S. Shpectorov, An infinite-dimensional 2-generated primitive axial algebra of Monster type, arXiv:2007.02430, 10 pages, Jul 2020.
(1. Gorshkov and A. Staroletov, On primitive 3-generated axial algebras of Jordan type, arXiv:2005.13791, May 2020, 24 pages.
(0) J.I. Hall, F. Rehren and S. Shpectorov, Universal axial algebras and a theorem of Sakuma, J. Algebra 421 (2015), 394-424.
(1) J.I. Hall, F. Rehren and S. Shpectorov, Primitive axial algebras of Jordan type, J. Algebra 437 (2015), 79-115.

References

(8) S.M.S. Khasraw, J.F. M ${ }^{\text {C }}$ nroy and S. Shpectorov, On the structure of axial algebras, Trans. Amer. Math. Soc. 373 (2020), 2135-2156.
(9) J.F. Mc Inroy and S. Shpectorov, An expansion algorithm for constructing axial algebras, J. Algebra 550 (2020), 379-409.
(10) J.F. M ${ }^{c}$ Inroy and S. Shpectorov, From forbidden configurations to a classification of some axial algebras of Monster type, arXiv:2107.07415, 41 pages, Jul 2021.
(1) F. Rehren, Generalised dihedral subalgebras from the Monster, Trans. Amer. Math. Soc. 369 (2017), no. 10, 6953-6986.
(13) T. Yabe, Jordan Matsuo algebras over fields of characteristic 3, J. Algebra 513 (2018), 91-98.
(3) T. Yabe, On the classification of 2-generated axial algebras of Majorana type, arXiv:2008.01871, 34 pages, Aug 2020.

Misaotra anao nihaino!

Merci de votre attention!

